click to show more information

click to hide/show information About this Show

[untitled]

NETWORK

DURATION
00:30:00

RATING

SCANNED IN
San Francisco, CA, USA

SOURCE
Comcast Cable

TUNER
Channel 24 (225 MHz)

VIDEO CODEC
mpeg2video

AUDIO CODEC
ac3

PIXEL WIDTH
544

PIXEL HEIGHT
480

TOPIC FREQUENCY

San Francisco 6, Us 4, The City 2, Hetch Hetchy 2, Cal 1, Polley 1, Spec 1, Constructability 1, Presidio 1, Yosemite 1, Landscaping 1, Flushing 1,
Borrow a DVD
of this show
  SFGTV2    [untitled]  

    March 21, 2013
    5:30 - 6:00pm PDT  

5:30pm
reasons, largely due to budget issues. and at the time we were asked to consider an alternative design using concrete rather than the scheme that was potentially planned for previous to that, which was a steel frame structure that used hydraulic dampers to control seismic motion. >> so, i met with my team. we worked hard. we came up with a great idea. let's take out the heavy steel structure, let's put in an innovative vertical post tension concrete structure, great idea. we did that. a lot of other things. and we came up with a price of 140 million. so, we achieved that goal. and, so, when we first started looking at the building, it was going to cost a lot of money. because of the way it was being built, we could only get 12 floors. we wanted more space for our employees. we ended up going and saying, okay, if we do a concrete building instead, which was web core's idea, we can get 13 floors, not 12 floors. the concrete doesn't require much space between the floors as a steel building does.
5:31pm
and it could be cheaper. yes, more space, less money, great idea. ♪ ♪ >> we know that right now there are things happening in power, with sewer, with water that are not always proven technologies, but they're things that are enough proven you should take a bit of a risk and you should show others it can be done. >> we're showing the world, suddenly had wind turbines which they didn't have before. so, our team realizing that time would change, and realizing where the opportunities were today, we said, you know what, we started out as really something to control wind as an asset, when you combine today's technology becomes something entirely different. >> wind turbines in an urban environment is a relatively new concept. there are a few buildings in other major cities where they
5:32pm
have installed wind turbines on the roof. and wind turbines in buildings are effective. >> the discussion was do we do that or not? and the answer was, of course. if they're not perfect yet, they're building a building that will last 100 years. in 100 years someone is going to perfect wind efficient turbines. if these aren't right, we'll replace them. we have time to do that. >> the building that's two renewable energy generations. wind turbines located on the north facade. two different levels of photo volume takes. >> we have over 600 solar panels and three platforms on the building, and four integrated wind turbines. the wind turbines and the solar panels produce 7% of the building's energy. and we're reducing the use of energy here by 32% in the office building. >> the entire building is controlled by a complex
5:33pm
computer system which monitors and adjusts air, heating and lights as well as indoor shades. >> the building is going to be a smart building. it's going to have all integrated features. so, it has a monitor on the roof that knows where the sun is. as it gets warmer or colder, it heats and cools the building. as it gets lighter, shades can go up or down to make sure that you're not over using any kind of heat or air conditioning, but as it gets darker the shades can go back up. the lights inside the building self-adjust depending how close they are to the light sources outside, how light it is, how dark it is. so, you're not using energy more than you need. >> we also have occupancy sensors. if nobody is in that room, lights turn off. it's likely to have sustainable features. it's another thing to have an integrated systems sustainability. >> when you have a building that's lead platinum, there are a couple themes important. one is daylight harvesting
5:34pm
where you harvest the daylight and have it penetrate the building so that people have views, they see sunlight, which means that partitions and workstations are much lower so that people can see. >> so, human comfort combined with light reduction, the amount of electric light reduction, all with the aim of creating, you know, a marvelous workplace that people want to come to, feel comfortable working in, thrive at what they're doing, all kind of integrate together. and the daylighting lighting strategy is a very important part of that equation. >> one of the keys to this building is that we're maximizing the use of natural daylight to light the building. >> here in our south facade we have light shells. they help shade the floor, but as well light bounces off of the light shells into the interior of the floor providing more daylight into the interior of the floor. lighting is both the greatest
5:35pm
use of energy consumption in an office building, but it also contributes to the largest amount of heat gain in the building. we're maximizing the use of natural daylighting. we also have light sensors that minimize the use of artificial lighting. >> by having light outside the building skin, what that does is we are mitigating it before it hits the glass. we have a high performance, low formal gain graph. the system does not have to work as much to either cool the building or heat the building. >> this building also incorporates or utilizes under floor system for delivery of heating and cooling to the building. this in conjunction with the high efficiency equipment that we've installed in the building reduces the consumption of energy for heating and cooling by 51%. >> we have two destination elevators.
5:36pm
destination elevator save 35 to 40% of the electrical energy over traditional elevator. these elevators save energy by using a regenerative drive. when the cars are going up empty or down full of people, they generate electricity that goes back into the building grid. these elevators have energy by grouping people going to the same floor in the same cab. and the way they work is you have a shared elevator call button in the lobby. you would indicate which floor you're going to, for instance like 3, and it will direct me to elevator c. so, i'll go to an elevator with people that are going to that same floor. what's also interesting is inside the elevator floor cab there are no selection buttons because i selected my floor in the lobby. this takes some getting used to as we're all accustomed to choosing our floor inside the elevator cabs. ♪ ♪ >> another thing we saut that was a challenge for this
5:37pm
building was the permitting process for the delivery machine to use reclaimed water in an office building. and i think that we really broke the ground for future use to be much more commonplace for utilization of reclaimed water in office buildings. this building uses 60% less water than a typical osv building. that's achieved by using rainwater for landscaping, treating wastewater on-site for reuse in the building's toilets. >> the machine is an ecological waste treatment system for water resouls. so, the living machine to accelerate what happens naturally in nature is biomimickery that happens in tidal estuaries. it brings in nutrients to the microbes. it's delivered in the air, and does the rest of the process, chewing up those nutrients in
5:38pm
the water and producing nitrogen and carbon. we're doing that in a system where we're creating 12 to 16 tides per day. >> the wastewater for our building begins its journey by travel tog our primary tank which is a fairly normal looking manhole. beneath these manholes is a 10,000 gallon primary tank. there are two chambers. the trash chamber which filters out the trash and plastics and the organic solids settle out just as normal wastewater treatment process is. the water then flows to an equalization tank, a recirculation tank, and then on to tidal flow wetlands cell 1a. all those these cells look to be only 3 or 4 feet deep, they're actually 8 feet deep below this concrete sidewalk. the water repeatedly cycle into the cell from the bottom up. as the water comes up into this cell, it meets the microbes here to treat the wastewater.
5:39pm
they flourish off the organics found in the wastewater. after multiple cycles, most of the wastewater treatment has already occurred and the water then flows to the vertical cells located around the corn iron polk street. 2c is located half outside on polk street and half inside in the building lobby. after the final polishing, the water flows to the disinfection room of the basement of the building. there the water goes through two disinfection processes. first ultraviolet light, and second a dosing of chlorine. the treated water is stored in a 5,000 gallon reclaimed water tank where it is pumped throughout the building for toilet flushing purposes. the treatment cycle is complete and the water is reused again and again. this new building features a rainwater harvesting system. rainwater is captured from the building's roof and the children's play area along the side of the building and sent down to our disinfection room where there is a 25,000 gallon sis tern. the rainwater receives minor treatment and is used to
5:40pm
irrigate the building's trees and landscaping. >> when we're resues using water we have on-site, we're not purchasing new water and we're also not putting sewage down into the sewer system which is costs money. this is a demonstration project of 5,000 gallons a day. it is the beginning of understanding and feeling comfortable with this technology that can be scaled up into eco districts and community scale systems, campus-type systems where in those situations when the water is reused and the numbers are much higher, 50,000, 100,000, 200,000 gallons a day, imagine the savings on that that you're getting. you're not purchasing freshwater and you're not using the sewer and being charged appropriately. this wastewater processing and reuse technology is cutting edge. and although it's been successfully implemented in other cities, it will be one of the first such installations in an urban office building. >> here is a city agency that treats wastewater, but they send no wastewater to the
5:41pm
treatment facility. that says a lot. >> it's got a 12 gallon per day occupancy using 5,000 gallons per day with a building officing 1,000 people. that turns out to save over 2.7 million gallons a year. >> the public utilities commission runs water, power and sewer services for san francisco. we can't afford to be out of business after an earthquake. so, we're thinking about building a building. that building is going to hold our operations center and our emergency operations center for things like earth quack. that building had to be immediately occupiable. great. but we can do better than that. so, this new technology that we ended up using was a concrete building that straps basically, that goes through the interior of the building and allow the building to turn or twist as part of an earthquake as it corrects itself. >> in the course for the puc
5:42pm
building, we've actually incorporated in addition to that steel that's embedded in the monolithic concrete, specialized high strength cables that are not bonded to the sound concrete, but are threaded through essentially hollow conduits in the cast concrete. and when those cables are spread, they're actually anchored and they're actively in other floors and pressing down, forcing that concrete wall into a state of compression. and that's the characteristic which allows the building to shake, absorb energy from the earthquake, deform, and also come back to its original geometry. what that meant was the building would be functional. it meant it wouldn't have to be abandoned and fixed. >> we have probably the
5:43pm
greatest specification for concrete ever developed for a project that has a really innovative structural system. one of the things that's evident from the research that's been done is that concrete is responsible for a significant amount of co2 production. and that's worldwide. and we developed a way in which we could incorporate replacement material such as flag and fly ashe to supplement the portable cement and allow a big reduction in those carbon emissions associated with production from that poured cement. >> concrete for the building has a 70% replacement value with recycled materials fly ashe and recycled materials that would otherwise go to waste. reducing our carbon footprint in half. >> the way that we often do buildings in the city are often projects in the city is we go out and we do a low bid. somebody bids on something, we have to do everything that's
5:44pm
expected out completely. and everything after that thorable change prosecretary is very difficult. spec ed out. >> we use design bid delivery method. in this one we did a construction manager gc, which really means that we bring the contractor on board as we design and they participate in the design. it brings a lot of collaboration. >> the department of public works decided to try a more team oriented approach with this project. the best value approach. they really went to to us come on board as a team member and work with them. >> what that meant was the contractor allowing key subcontractors such as the electrical, mechanical, plumbing systems, would always be reviewed and looked at for constructability, for cost constraints, for scheduling. >> and it was a risk for the city. it was a change for the city, it was something very, very
5:45pm
different. we met all of our project parameters, the budget, the schedule. we love this project. it is a fantastic example of what can happen when you take a risk, you do something differently, and you work together. you get a great result. >> one of the things we're going to have in that building is going to be this media wall in the lobby. and that media wall has several things that it can show people, but one of the things it can show our employees and our visitors is how much energy, how much water, what we're using in the building. >> the wall is based on building data. we have total energy use per floor. we also have energy use in the building today that will show information and percentages on how much is being used today versus an average day. there's also information from solar, how much solar the building is producing, and
5:46pm
showing the savings from solar. we also have reclaimed water and that will be shown per month. the center section is dedicated to water, wastewater and power. we have live information showing us how much wastewater has been treated so far from the night before. there is also a twitter feed and information that anyone that comes in can see, you know, current news and information from the twitter. there's also bart information, when is the next bart leaving, when is the next train departing. and there is weather, hetch hetchy, and weather at san francisco. >> the physical arts wall is comprised of 54 feet, 160 high-definition monitors that has a 3-d motion detection that allows you to approach the wall and then to look at the contents that is there in front of you, which is a beautiful artistic narrative. and then as you move towards it, it activates the content that comes up.
5:47pm
>> this is one of the applications we developed with communications team at the puc and it's called, and it's about water cycle, how the water comes down from the snow in yosemite, into the mouth of the reservoir, gets treated, produces power, comes all the way down to the city and gets charged and leaves the bay. we developed a motion tracking system taw four cameras on the ceiling here which detects people when they approach the wall and presents information pop ups. so, you can enjoy it from a distance as a landscape, but once again up close there is another level of information that's educational about this facility. >> fire fly by artist ned con is an art installation which rises straight from the golden gate avenue sidewalk to the top of the building. >> the fire fly wall will be 5
5:48pm
by 5 polley carbon plates that will move with the wind and show a wave effect in the daytime. when those also swing back and forth and they hit the fulcrum, it will also set up an led light that will cover the fire fly. so, at nighttime people in another part of san francisco can see the side of our building and about 20 feet wide and 10 stories high will be a wall that will flickr on and off like fire flies at nighttime. it will be so energy efficient that if all those lights go on, it will be the equivalent of a 40 watt bulb. and also the new piece of artwork going all the way down the side of the building, which looks like this incredible wind ripples on a pond. and i thought, oh, my god, how incredible, how wonderful. >> inside the building we will have water walls in the main staircase, and the water will be dripping through the side of the wall. you'll be able to hear it, you'll be able to see it.
5:49pm
we call the san francisco artists and galleries and said, hey, we want a building that is a place people want to come to work in and to visit. we're now going to be buying art from between 08 and 100 local artists in san francisco and the arts commission will be hanging in that art the next couple of months in the building. >> we'll have a cafe in the lobby. the cafe will be serving people there. they'll have a child care center on-site so people with children can come to work. if something happens to their child they can walk right downstairs. it has enough space for 65 kids. >> we looked at various ways that we could be creative in promoting alternative transportation. we did this by providing bike racks and showers in the building. we do see the number of parking spaces to two parking spaces and providing electrical charging stations for alternative vehicles.
5:50pm
>> it's time for us to have a home that all of us can be proud of. >> and we couldn't do this without everybody working together on the one goal, which is, let's build something that reflects the honor of hetch hetchy, the honor of the greatest engineering feats, reflects what our puc does for our public, and for generations to come it will educate everybody. >> i'm really proud that one of the greenest and most sustainable buildings is here in norm in district 6. the wind turbine, the solar power, the living machines, recycled water that ed and the mayor has already spoken to. and what's also amazing about this building is it's not just internally, but you can actually see it on the outside. so, when people are walking around the city they can actually see the green and environmental aspects. >> what better way to show that
5:51pm
the puc cares about the environment and the puc is going to show everyone else, you can do this, too. and you can do it in a way that makes sense, that's affordable, and that is better for the environment. >> and this is the most energy efficient government building in the united states today, if not the world. and it is an example that the entire united states can look to and say, that's what we need to do to save our city hundreds of millions of dollars in energy consumption a year and set an example to everybody of how to save energy, to be green, to be sustainable, to be responsible. the city is leading the way. >> it will be immediately recognizable and iconic from various parts of the city or even if you see a picture. that's the sfpuc building. it's a wonderful building. ♪ ♪
5:52pm
5:53pm
>> in this fabulously beautiful persidio national park and near golden gate and running like a scar is this ugly highway. that was built in 1936 at the same time as the bridge and at that time the presidio was an army and they didn't want civilians on their turf. and the road was built high.
5:54pm
>> we need access and you have a 70 year-old facility that's inadequate for today's transportation needs. and in addition to that, you have the problem that it wasn't for site extenders. >> the rating for the high viaduct is a higher rating than that collapsed. and it was sapped quite a while before used and it was rusty before installed. >> a state highway through a federal national park connecting an independently managed bridge to city streets. this is a prescription for complication. >> it became clear unless there was one catalyst organization
5:55pm
that took it on as a challenge, it wouldn't happen and we did that and for people to advocate. and the project has a structural rating of 2 out of 100. >> you can see the rusting reinforcing in the concrete when you look at the edges now. the deck has steel reinforcing that's corroded and lost 2/3's of its strength. >> this was accelerated in 1989 when the earthquake hit and cal came in and strengthened but can't bring to standards. to fix this road will cost more than to replace. and for the last 18 years, we
5:56pm
have been working on a design to replace the road way, but to do in a way that makes it appropriate to be in a national park and not army post. >> i would say it's one of the most ugly structure, and it's a barrier between the mar sh and presidio. and this is a place and i brought my dogs and grandchildren and had a picnic lunch and it was memorable to use them when we come here. what would it look like when the design and development is completed. and we are not sure we want an eight lane highway going
5:57pm
through this town. and it's a beautiful area in a national seaport area on the planet. >> the road is going to be so different. it's really a park way, and it's a parkway through the national park. and they make the road disapeer to the national park. >> and the road is about 20 feet lower, normally midday, you go through it in two minutes. looking back from the golden gate bridge to presidio, you are more aware of the park land and less of the roads. and the viaduct will parallel the existing one and to the south and can be built while the existing one remains in operation.
5:58pm
and the two bridges there with open space between them and your views constantly change and not aware of the traffic in the opposite direction and notice the views more. and the lanes of course are a foot wider than they are today. and they will be shoulders and if your car is disabled, you can pull off to the edge. and the next area, the tunnel portal will have a view centered on the palace of fine arts and as you come out, you can see alkatrez island and bay. and the next area is about 1,000 feet long. and when you come into one, you can see through the other end. it's almost like driving through a building than through a tunnel. and noise from the roadway will
5:59pm
be sheltered. and the traffic will be out of view. >> when you come out of the last sort tunnel and as you look forward, you see the golden dome of the palace of fine arts and what more perfect way to come to san francisco through that gateway. >> it will be an amazing transformation. now you read it as one section, the road is a major barrier and then a wonderful strip along the water. all of those things are going to mesh together. >> right now the road really cuts off this area from public access. and with the new road, we will be able to open up the opportunity in a new way. >> this bunker that we see now is out of access for the general public.